| Surname       | Centre<br>Number | Candidate<br>Number |
|---------------|------------------|---------------------|
| First name(s) |                  | 2                   |

## **GCE A LEVEL**

wjec сбас

A420U30-1

O20-A420U30-1



### WEDNESDAY, 21 OCTOBER 2020 - MORNING

### PHYSICS – A level component 3 Light, Nuclei and Options

| 2 hours 15 minutes                                                           |           | For Exa  | aminer's us     | e only          |
|------------------------------------------------------------------------------|-----------|----------|-----------------|-----------------|
|                                                                              |           | Question | Maximum<br>Mark | Mark<br>Awarded |
|                                                                              |           | 1.       | 11              |                 |
|                                                                              |           | 2.       | 6               |                 |
|                                                                              |           | 3.       | 11              |                 |
| DITIONAL MATERIALS                                                           |           | 4.       | 7               |                 |
| addition to this examination paper, you will                                 | Section A | 5.       | 16              |                 |
| uire a calculator and a <b>Data Booklet</b> .                                |           | 6.       | 6               |                 |
|                                                                              |           | 7.       | 13              |                 |
| TRUCTIONS TO CANDIDATES                                                      |           | 8.       | 7               |                 |
| e black ink or black ball-point pen.<br>not use gel pen or correction fluid. |           | 9.       | 8               |                 |
| swer <b>all</b> questions.                                                   |           | 10.      | 15              |                 |
| te your name, centre number and candidate                                    | Section B | Option   | 20              |                 |

ADD

In ad requi

#### INST

Use Do n

Ansv

Write your name, centre number and candidate | Section B number in the spaces at the top of this page.

Write your answers in the spaces provided in this booklet. If you run out of space, use the

additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

#### **INFORMATION FOR CANDIDATES**

This paper is in 2 sections, **A** and **B**.

Section A: 100 marks. Answer all questions. You are advised to spend about 1 hour 50 minutes on this section.

Section B: 20 marks; Options. Answer one option only. You are advised to spend about 25 minutes on this section.

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 6.



120

Total

|    |        | SECTION A                                                                                                                                                                                                                          | Exa<br>o |
|----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|    |        | Answer all questions.                                                                                                                                                                                                              |          |
| Ι. | (a)    | Bruce throws a lump of coal towards Dani which she catches. Bruce claims that, because chemical energy is being transferred from himself to Dani, the lump of coal is a <b>wave</b> . Explain whether or not Bruce is correct. [2] |          |
|    | ······ |                                                                                                                                                                                                                                    |          |
|    | (b)    | The door of a microwave oven has a metal grille and this grille has holes in it of diameter 2 mm so that the food can be seen within the oven.                                                                                     |          |
|    |        |                                                                                                                                                                                                                                    |          |
|    |        | <ul> <li>(i) Explain why the food can be seen through the door while the user is safe from dangerous microwaves of wavelength 12 cm.</li> <li>[3]</li> </ul>                                                                       |          |
|    |        | ······                                                                                                                                                                                                                             |          |
|    |        |                                                                                                                                                                                                                                    |          |
|    |        |                                                                                                                                                                                                                                    |          |
|    |        |                                                                                                                                                                                                                                    |          |



| Examiner<br>only | ate or calculate a typical photon energy of visible light. [1]                                  | (ii)  |
|------------------|-------------------------------------------------------------------------------------------------|-------|
|                  | plain whether or not a microwave photon has a greater or smaller energy than a ible photon. [1] | (iii) |
|                  |                                                                                                 |       |







04

A420U301 05

|   | (a)   | Calculate the de Broglie wavelength of an electron accelerated by a pd of 2200 V.                                                              | [3] | Examin<br>only |
|---|-------|------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|
|   |       |                                                                                                                                                |     |                |
|   |       |                                                                                                                                                |     |                |
|   |       |                                                                                                                                                |     |                |
|   | ••••• |                                                                                                                                                |     |                |
|   |       |                                                                                                                                                |     |                |
|   | (b)   | Explain how electrons can be used in a laboratory to produce a diffraction pattern and                                                         | the |                |
|   | ( )   | Explain how electrons can be used in a laboratory to produce a diffraction pattern and effect of increasing the pd on the diffraction pattern. | [3] |                |
|   |       |                                                                                                                                                |     |                |
|   |       |                                                                                                                                                |     |                |
| • |       |                                                                                                                                                |     |                |
|   |       |                                                                                                                                                |     |                |
|   |       |                                                                                                                                                |     |                |
|   |       |                                                                                                                                                |     |                |
|   |       |                                                                                                                                                |     | 6              |
|   |       |                                                                                                                                                |     |                |
|   |       |                                                                                                                                                |     |                |
|   |       |                                                                                                                                                |     |                |
|   |       |                                                                                                                                                |     |                |

5







A420U301 07

|     | (ii)          | <b>Show clearly</b> that the <i>n</i> = 1 data in the diagram leads to an uncertainty in the wavelength of $\pm 2$ nm. You may assume that the manufacturer's labelling of 300 lines per mm for the diffraction grating is exact and that $\tan \theta \approx \sin \theta \approx \theta$ . | [4]               | Examiner<br>only  |
|-----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
|     |               |                                                                                                                                                                                                                                                                                              |                   |                   |
|     |               |                                                                                                                                                                                                                                                                                              |                   |                   |
|     |               |                                                                                                                                                                                                                                                                                              |                   |                   |
| (b) | data          | manufacturer of the laser states that its wavelength is exactly 593.5 nm. The $n = 1$ in the diagram lead to a measured laser wavelength of 594 ± 1 nm. Explain wheth of these values and the value from part (a) are all consistent.                                                        | = 2<br>her<br>[2] | A 4 2 0 1 1 3 0 1 |
|     |               |                                                                                                                                                                                                                                                                                              |                   |                   |
| (C) | Expla<br>(594 | ain why the $n = 1$ data (592 ± 2 nm) lead to a larger uncertainty than the $n = 2$ data ± 1 nm).                                                                                                                                                                                            | a<br>[2]          |                   |
|     |               |                                                                                                                                                                                                                                                                                              |                   |                   |
|     |               |                                                                                                                                                                                                                                                                                              |                   | 11                |
|     |               |                                                                                                                                                                                                                                                                                              |                   |                   |





© WJEC CBAC Ltd.

08

(A420U30-1)

Examiner only (C) Victoria claims that when the laser system shown below is in equilibrium, the amplifying medium provides only a 0.5% increase in intensity of the beam each time it travels across the cavity. Her research partner, David, insists that the exponential increase in light intensity provided by the amplifying medium means that the beam intensity is increased by a factor of thousands for each pass even when the laser is in equilibrium. Discuss whether Victoria or David is correct. [3] exiting laser beam 99.0% 100% reflecting laser beam amplifying medium reflecting mirror mirror (laser cavity) A420U301 09 7



Examiner

**5.** Bronwen carries out an experiment to investigate the relationship between count rate and distance from a gamma emitting radioactive source (radium-226).



Her results are shown in the table.

| Distance/cm | Total counts in 10 minutes | ln(distance/cm) | ln(corrected total counts in 10 minutes) {corrected for background radiation} |
|-------------|----------------------------|-----------------|-------------------------------------------------------------------------------|
| 2.0         | 3 466                      | 0.69            | 8.08                                                                          |
| 3.0         | 1 697                      | 1.10            | 7.28                                                                          |
| 4.0         | 1 028                      | 1.39            | 6.67                                                                          |
| 5.0         | 762                        |                 |                                                                               |
| 6.0         | 609                        | 1.79            | 5.91                                                                          |
| 7.0         | 507                        | 1.95            | 5.59                                                                          |
| 8.0         | 447                        |                 |                                                                               |

(a) (i) The **background radiation is 0.40 counts per second. Complete the table**. [3] *Space for calculations.* 



Examiner only Complete the graph by plotting the two missing data points. (ii) [1] ln(corrected total counts in 10 minutes) 8.50 8.00 7.50 ж 7.00 6.50 6.00 × 5.50 5.00 0.60 1.40 2.00 0.80 1.00 1.20 1.60 1.80 2.20 ln(distance/cm) Draw a line of best fit and calculate its gradient. [3] (iii)

11



|                             | Theory suggests that:                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | count rate $\propto \frac{1}{\text{distance}^2}$                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             | I. Show that the gradient of the graph should be –2. [2]                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | II. Explain to what extent the results obtained in this experiment agree with theory.                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <i>(b)</i> Ra<br>pla        | dium-226 also emits other radiation. Suggest a reason for using a 3mm aluminium te between the source and the GM tube. [1]                                                                                                                                                                                                                                                                                                                                                 |
| pla<br>(c) In<br>"bl<br>sci | dium-226 also emits other radiation. Suggest a reason for using a 3mm aluminium<br>te between the source and the GM tube. [1]<br>1896, G. Brandes reported that large intensities of high energy X-rays produced a<br>ue-grey" glow within the eye. This was later confirmed by Willhelm Röntgen and othe<br>entists. The mechanism for this "blue-grey" glow is still not fully understood. Discuss<br>ethics of reproducing this experiment to understand it better. [3] |
| pla<br>(c) In<br>"bl<br>sci | te between the source and the GM tube. [1]<br>1896, G. Brandes reported that large intensities of high energy X-rays produced a<br>ue-grey" glow within the eye. This was later confirmed by Willhelm Röntgen and other<br>entists. The mechanism for this "blue-grey" glow is still not fully understood. Discuss                                                                                                                                                         |
| pla<br>(c) In<br>"bl<br>sci | te between the source and the GM tube. [1]<br>1896, G. Brandes reported that large intensities of high energy X-rays produced a<br>ue-grey" glow within the eye. This was later confirmed by Willhelm Röntgen and other<br>entists. The mechanism for this "blue-grey" glow is still not fully understood. Discuss                                                                                                                                                         |



13

| Discuss the make-up and properties of the following particles $e^-$ , $e^+$ , $n$ , $\overline{p}$ , $\pi^-$ . | [6 QER]    |
|----------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
|                                                                                                                |            |
| 13 © WJEC CBAC Ltd. (A420U30-1)                                                                                | Turn over. |



|     | 200                                                                                                                                                  |                           |                                       |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|
|     | $^{209}_{83}\text{Bi} \longrightarrow \text{Tl} + \text{Tl}$                                                                                         | He                        |                                       |
| (b) | Determine whether or not a kinetic energy of 3.6 reaction is consistent with the data in the table energies of the bismuth and thallium nuclei are r | below (you may assume the | in the above<br>at the kinetic<br>[5] |
|     | Nuclear mass of thallium isotope                                                                                                                     | 204.9300 u                | ]                                     |
|     | Nuclear mass of alpha particle                                                                                                                       | 4.0015 u                  |                                       |
|     | Binding energy per nucleon of ${}^{209}_{83}Bi$ nucleus                                                                                              | 7.87 MeV / nucleon        |                                       |
|     | Mass of proton, $m_{\rm p}$                                                                                                                          | 1.0073 u                  |                                       |
|     | Mass of neutron, $m_{\rm n}$                                                                                                                         | 1.0087 u                  |                                       |
|     | Energy equivalent of 1 u                                                                                                                             | 931 MeV                   |                                       |
|     |                                                                                                                                                      |                           |                                       |
|     |                                                                                                                                                      |                           |                                       |
|     |                                                                                                                                                      |                           |                                       |
|     |                                                                                                                                                      |                           |                                       |
|     |                                                                                                                                                      |                           |                                       |
|     |                                                                                                                                                      |                           |                                       |
|     |                                                                                                                                                      |                           |                                       |
|     |                                                                                                                                                      |                           |                                       |
|     |                                                                                                                                                      |                           |                                       |
|     |                                                                                                                                                      |                           |                                       |
|     |                                                                                                                                                      |                           |                                       |
|     |                                                                                                                                                      |                           |                                       |



| (C) | (i)  | The half-life of ${}^{209}_{83}Bi$ is $1.9 \times 10^{19}$ year. Calculate the activity of 1.00 gram of ${}^{209}_{83}Bi$ . | [4]         | Examiner<br>only |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------|-------------|------------------|
|     |      |                                                                                                                             |             |                  |
|     |      |                                                                                                                             |             |                  |
|     | (ii) | Determine the number of nuclei in 1.00 gram of $^{209}_{83}Bi$ which will decay in 5 years                                  | ars.<br>[2] |                  |
|     |      |                                                                                                                             |             | A420U301<br>15   |
|     |      |                                                                                                                             |             |                  |
|     |      |                                                                                                                             |             | 13               |
|     |      |                                                                                                                             |             |                  |
|     |      |                                                                                                                             |             |                  |
|     |      |                                                                                                                             |             |                  |



| An e                                  |                       |                      |                                                                                                 |                          | Exami |
|---------------------------------------|-----------------------|----------------------|-------------------------------------------------------------------------------------------------|--------------------------|-------|
| betwo<br>420 V                        | een two parallel plat | tes separated by a c | of 420 V and then enters t<br>distance, <i>d</i> . These parallel<br>alfway between the two pla | plates also have a pd of | only  |
|                                       | cathode<br>0 V        | anode<br>+420 V      | +420 V                                                                                          |                          |       |
|                                       |                       |                      |                                                                                                 |                          |       |
|                                       |                       | δΞ                   |                                                                                                 | ţ d                      |       |
|                                       | vacuum                |                      | 0 V                                                                                             |                          |       |
| (a)                                   |                       |                      | elled a distance, <i>d</i> , horizont<br>bint where it enters the para                          |                          |       |
| •••••                                 |                       |                      |                                                                                                 |                          |       |
|                                       |                       |                      |                                                                                                 |                          |       |
| ·····                                 |                       |                      |                                                                                                 |                          |       |
| ······                                |                       |                      |                                                                                                 |                          |       |
| · · · · · · · · · · · · · · · · · · · |                       |                      |                                                                                                 |                          |       |
| <br>                                  |                       |                      | with charge –2 <i>e</i> accelerate<br>ass through the same point.                               |                          |       |
| (b)                                   |                       |                      |                                                                                                 |                          |       |



A420U301 17

Examiner only A sphere made of caesium is placed in space and illuminated by ultraviolet radiation of 9. (a) photon energy 10.3 eV. The work function of caesium is 2.1 eV. Explain in clear steps, using Einstein's photoelectric equation (and other physics), why the maximum potential attainable by the caesium sphere is +8.2V. [5] Hence, calculate the maximum electric field strength around the caesium sphere given (b) that its radius is 6.5 cm. [3] 8



| 10. | (a) | (i)       | A long solenoid has 12000 turns per metre and carries a current of 3.8A. Calculate the magnetic flux density at its centre. [1]                                                       |
|-----|-----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |     | (ii)      | Sketch the magnetic field lines due to this long solenoid. [2]                                                                                                                        |
|     |     |           | Current                                                                                                                                                                               |
|     |     | (iii)<br> | State how the strength of the magnetic field produced by <b>this solenoid</b> can be increased greatly without increasing the current or changing the dimensions of the solenoid. [1] |
|     |     |           |                                                                                                                                                                                       |
|     |     |           |                                                                                                                                                                                       |



| (b)               | Maria<br>dens<br>of 42 | ity 1.76Τ. She ι<br>Ims.                     | an experiment ins<br>uses a copper wir | ide an extremely larg<br>e and deforms it from | shape 1 to sha    | eld of uniform<br>pe 2 in a time     |
|-------------------|------------------------|----------------------------------------------|----------------------------------------|------------------------------------------------|-------------------|--------------------------------------|
|                   |                        | Shape<br>1                                   |                                        |                                                | ape<br>2          |                                      |
|                   |                        |                                              | <i>B</i> = 1.76 T                      |                                                |                   | <i>B</i> = 1.76 T                    |
| (                 | $\otimes$              | $\wedge$ (                                   | $\otimes$                              | $\otimes$                                      | $\sim$            |                                      |
| ea =              | <u> </u>               |                                              | •                                      | •                                              |                   | — Area =                             |
| 5 cm <sup>2</sup> |                        |                                              | $\mathbf{X}$                           |                                                | -                 | 625 cm <sup>2</sup><br>(42 ms later) |
| ,                 |                        |                                              |                                        |                                                |                   |                                      |
| (                 | $\bigotimes$           | (                                            | $\bigotimes$                           | $\otimes$                                      | $\sim \otimes$    |                                      |
|                   | (i)                    | Explain why a                                | large current flow                     | vs in the copper wire c                        | luring this defor | mation. [3]                          |
|                   | ·····                  |                                              |                                        |                                                |                   |                                      |
|                   |                        |                                              |                                        |                                                |                   |                                      |
|                   |                        |                                              |                                        |                                                |                   |                                      |
|                   |                        | Explain how y                                | ou can deduce th                       | at this current flows a                        | nticlockwise.     | [2]                                  |
|                   |                        |                                              |                                        |                                                |                   |                                      |
|                   | (iii)                  | Calculate the $6.75 \times 10^{-3} \Omega$ . | mean current flow                      | wing in the copper wi                          | re given that its | s resistance is<br>[3]               |
|                   | ·····                  |                                              |                                        |                                                |                   |                                      |
|                   |                        |                                              |                                        |                                                |                   |                                      |
|                   |                        |                                              |                                        |                                                |                   |                                      |
|                   |                        |                                              |                                        |                                                |                   |                                      |
|                   | ••••••                 | ••••••                                       |                                        |                                                |                   | •••••••                              |



| (iv) | Halfway through the deformation of the copper wire it is in the position shown below.<br>Maria claims that in this position, a "motor effect" force of approximately 200 N will<br>act upwards on the length of copper wire shown. Determine whether or not Maria is<br>correct. [3] |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|      | D = 1.76  T                                                                                                                                                                                                                                                                          |  |





| SECTION B: OPTIONAL                                                           | TOPICS                      | Examiner<br>only |
|-------------------------------------------------------------------------------|-----------------------------|------------------|
| Option A – Alternating Currents                                               |                             |                  |
| Option B – Medical Physics                                                    |                             |                  |
| Option C – The Physics of Sports                                              |                             |                  |
| Option D – Energy and the Environment                                         |                             |                  |
| Answer the question on one topic only.                                        |                             |                  |
| Place a tick ( $\checkmark$ ) in <b>one</b> of the boxes above, to show which | ch topic you are answering. |                  |
| You are advised to spend about 25 minutes on this                             | section.                    |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
|                                                                               |                             |                  |
| 21 © WJEC CBAC Ltd. (A420U30-1)                                               |                             | Turn over.       |







|      |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [5]   |
|------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      |      |       | VARIABLE<br>VOLTS/DIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|      |      |       | .1 50 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|      |      |       | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mV    |
|      |      |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5     |
|      |      |       | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|      |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| •••• |      | ***** | SEC/DIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|      |      | n     | ns 2 1 .5 .2 .1 5 .2 .1 5 .5 .2 .1 5 .5 .5 .5 .2 .1 .5 .5 .2 .1 .1 .5 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .1 .5 .2 .5 .2 .5 .2 .5 .2 .5 .5 .2 .5 .5 .2 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 |       |
|      |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0     |
|      |      |       | 50 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|      |      | se    | $c^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,<br> |
|      | <br> |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|      |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|      | <br> |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|      |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|      | <br> |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |











|    | X-ray                          | ultrasound A scar                               | n radioactive tracer                                 | CT scan                                                                                           |
|----|--------------------------------|-------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|    | -                              |                                                 |                                                      |                                                                                                   |
|    | the following:                 | reasons for your ans                            | wer, state which of the ab                           | ove you would use to detect                                                                       |
|    | (i) A cereb                    | oral haemorrhage (ble                           | eed in the brain).                                   | [3]                                                                                               |
|    |                                |                                                 |                                                      |                                                                                                   |
|    |                                |                                                 |                                                      |                                                                                                   |
|    |                                |                                                 |                                                      |                                                                                                   |
|    |                                |                                                 |                                                      |                                                                                                   |
|    |                                |                                                 |                                                      |                                                                                                   |
|    |                                |                                                 |                                                      |                                                                                                   |
|    | (ii) An unde                   | eractive thyroid gland                          | l.                                                   | [2]                                                                                               |
|    |                                |                                                 |                                                      |                                                                                                   |
|    | ••••••                         |                                                 |                                                      |                                                                                                   |
|    |                                |                                                 |                                                      |                                                                                                   |
|    |                                |                                                 |                                                      |                                                                                                   |
|    |                                |                                                 |                                                      |                                                                                                   |
| d) | An MRI (mag<br>0.80T to 1.40   | gnetic resonance ima<br>0T along its length.    | aging) scanner has a mag<br>Calculate the wavelength | gnetic field that varies from                                                                     |
| d) | 0.80T to 1.40                  | 0 Talong its length.<br>an a slice halfway alor | Calculate the wavelength                             | gnetic field that varies from<br>of electromagnetic waves<br>h part of the electromagnetic<br>[4] |
| d) | 0.80 T to 1.40 required to sca | 0 Talong its length.<br>an a slice halfway alor | Calculate the wavelength                             | n of electromagnetic waves<br>h part of the electromagnetic                                       |
| d) | 0.80 T to 1.40 required to sca | 0 Talong its length.<br>an a slice halfway alor | Calculate the wavelength                             | n of electromagnetic waves<br>h part of the electromagnetic                                       |
| d) | 0.80 T to 1.40 required to sca | 0 Talong its length.<br>an a slice halfway alor | Calculate the wavelength                             | n of electromagnetic waves<br>h part of the electromagnetic                                       |
| d) | 0.80 T to 1.40 required to sca | 0 Talong its length.<br>an a slice halfway alor | Calculate the wavelength                             | n of electromagnetic waves<br>h part of the electromagnetic                                       |
| d) | 0.80 T to 1.40 required to sca | 0 Talong its length.<br>an a slice halfway alor | Calculate the wavelength                             | n of electromagnetic waves<br>h part of the electromagnetic                                       |
| d) | 0.80 T to 1.40 required to sca | 0 Talong its length.<br>an a slice halfway alor | Calculate the wavelength                             | n of electromagnetic waves<br>h part of the electromagnetic                                       |
| d) | 0.80 T to 1.40 required to sca | 0 Talong its length.<br>an a slice halfway alor | Calculate the wavelength                             | n of electromagnetic waves<br>h part of the electromagnetic                                       |
| d) | 0.80 T to 1.40 required to sca | 0 Talong its length.<br>an a slice halfway alor | Calculate the wavelength                             | n of electromagnetic waves<br>h part of the electromagnetic                                       |



|     |     |         | Option C – Physics of Sports                                                                                                                                                                                                                                                                                                                               |
|-----|-----|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13. | (a) | (i)     | Explain what is meant by the term <i>moment of inertia</i> of an object. [2]                                                                                                                                                                                                                                                                               |
|     |     | (ii)    | Calculate the moment of inertia of a cricket ball which has a rotational kinetic energy of 1.47 J if it is spinning at a rate of 30 revolutions per second. [3]                                                                                                                                                                                            |
|     | (b) | <br>(i) | The batsman hits the ball with an initial velocity of 25 m s <sup>-1</sup> at an angle of 30° to the horizontal. A fielder standing 5.6 m away from the batsman can catch a ball 2.4 m above the ground. Evaluate whether the ball can be caught by the fielder. Assume that air resistance can be ignored and that the ball is hit from ground level. [5] |
|     |     |         | 2.4 m<br>23 5.6 m                                                                                                                                                                                                                                                                                                                                          |
|     |     |         |                                                                                                                                                                                                                                                                                                                                                            |



|          |                                                                                                                                                 | Exan   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
| ······   |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
| ······   |                                                                                                                                                 |        |
| (ii)     | Explain why a fielder will move his hands in the direction of motion of the cricket ba when catching.                                           | :]     |
|          |                                                                                                                                                 |        |
| <u>.</u> |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
| (iii)    | The coefficient of restitution between the pitch and the ball is 0.37. Determine th bounce height if the ball falls from a height of 2.35 m. [2 | e<br>] |
|          | · · · · · · · · · · · · · · · · · · ·                                                                                                           |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
|          |                                                                                                                                                 |        |
| 29       | © WJEC CBAC Ltd. (A420U30-1) Turn ove                                                                                                           | r.     |

|     |        |                                                                                                                                                                                                                          | Examiner |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (C) |        | his part of the question, the interactions between the ball and the air need to be taken account.                                                                                                                        | only     |
|     | (i)    | Explain why a spinning cricket ball will change direction when moving through the air. Your answer should include the forces acting on the ball during the flight and a diagram may be included. [3]                     |          |
|     |        |                                                                                                                                                                                                                          |          |
|     |        |                                                                                                                                                                                                                          |          |
|     |        |                                                                                                                                                                                                                          |          |
|     | ·····  |                                                                                                                                                                                                                          |          |
|     | (ii)   | Determine the drag force acting on a cricket ball of radius 3.6 cm during flight if the speed of the ball is $24.3 \text{ m s}^{-1}$ and its drag coefficient is 0.76.<br>Density of air = $1.3 \text{ kg m}^{-3}$ . [3] |          |
|     | ·····  |                                                                                                                                                                                                                          |          |
|     | •••••• |                                                                                                                                                                                                                          |          |
|     |        |                                                                                                                                                                                                                          | 20       |
|     |        |                                                                                                                                                                                                                          |          |
|     |        |                                                                                                                                                                                                                          |          |
|     |        |                                                                                                                                                                                                                          |          |



# **BLANK PAGE**

## PLEASE DO NOT WRITE ON THIS PAGE



|     |     |        | Option D – Energy and the Environment                                                                                                                                                                                                                                                                                                                                                | Exan |
|-----|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 14. | (a) | (i)    | The total power emitted by the Sun is $3.8 \times 10^{26}$ W. Calculate the intensity of radiation received at the upper atmosphere of planet Earth and state the name given to this value. The distance between the Earth and the Sun is $1.5 \times 10^{11}$ m. [2]                                                                                                                | •    |
|     |     | ······ |                                                                                                                                                                                                                                                                                                                                                                                      |      |
|     |     | (ii)   | A student models the energy balance of planet Earth without its atmosphere. He calculates the theoretical power absorbed by the Earth to be $1.2 \times 10^{17}$ W. Assuming the Earth to be in thermal equilibrium and to behave as a black body, show that the temperature of the Earth for this model is approximately 250 K. The radius of the Earth is $6.4 \times 10^6$ m. [3] |      |
|     |     |        |                                                                                                                                                                                                                                                                                                                                                                                      |      |
|     |     |        |                                                                                                                                                                                                                                                                                                                                                                                      |      |
|     |     | (iii)  | The actual mean surface temperature of the Earth is 287K. Without calculation, account for this difference in temperature and explain how human activity has further contributed to this. [3]                                                                                                                                                                                        | ;    |
|     |     |        |                                                                                                                                                                                                                                                                                                                                                                                      |      |
|     |     |        |                                                                                                                                                                                                                                                                                                                                                                                      |      |
|     |     |        |                                                                                                                                                                                                                                                                                                                                                                                      |      |



Examiner only State and explain the three conditions that are simultaneously required to produce (b) (i) a sustainable fusion reaction. [3] A fusion test reactor requires a triple product greater than  $3.5 \times 10^{28} s Km^{-3}$ . The plasma has a volume of  $70 m^3$  and contains  $2.4 \times 10^{22}$  particles. If a confinement time of 0.9 seconds is achieved, determine the minimum temperature necessary for (ii) this reaction. [2] (C) (i) A company manufactures thermal plasterboards using a composite of two different materials. One of the materials is known to have a thermal conductivity value of  $0.030 Wm^{-1} \circ C^{-1}$ . Explain what the statement in italics means. [2]





34

| Question number | Additional page, if required.<br>Write the question number(s) in the left-hand margin. | Examine<br>only |
|-----------------|----------------------------------------------------------------------------------------|-----------------|
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |
|                 |                                                                                        |                 |



| Question number | Additional page, if required.<br>Write the question number(s) in the left-hand margin. | Examiner<br>only |
|-----------------|----------------------------------------------------------------------------------------|------------------|
|                 |                                                                                        | 1                |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |
|                 |                                                                                        |                  |

